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Abstract.We present analysis of security of the most known assymetric algorythm RSA
and its modern version MultiPrime RSA. We focused on more precisious estimations of
time complexity of two factorization algorithms: Elliptic Curve Method and General
Number Field Sieve. Additionally for the MultiPrime RSA algorithm we computed the
maximal number of prime factors for given modulus length which does not decrease the
security level.
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1. Introduction

Many public key algorithms base on the factoring problem. The fastest
known algorithm of factorization for large numbers is GNFS (General Num-
ber Field Sieve). The expected running time of the algorithm depends only
on the size of the number and it is not sensitive for small factors (small in
comparison with the size of the number).

Analysis of security the public key algorithms often base on the expec-
ted time of running GNFS. If the number has more factors than two, then
the other factorization algorithms may be faster, like ECM (Elliptic Curve
Method).

In this article we will show a comparison between expected time of
running ECM and GNFS depending on the size of the number and the
number of prime factors. However, parallel hardware implamentations are
considered (see [8]) we focused on single processor implementations.
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2. GNFS (General Number Field Sieve)

2.1. Introduction to GNFS

The biggest numbers being the product of two distinct prime factors
have been factorized during the RSA Challenge. Many of these numbers
have been factorized using very advanced solutions based on parallel archi-
tectures what in the result makes hard to compare the time of factoring
these numbers.

We used the data included on the website of RSA Challenge, so we
were able to estimate the number of all instructions needed to make a sieve
step in GNFS Algorithm.
We were not able to estimate the number of instructions needed to make
all steps of GNFS algorithm but we knew that the sieve step is the longest
of all steps in GNFS algorithm and takes from 60% to 80% of amount of
time. In these circumstances we estimated the running time of GNFS by
the time of sieving step.

2.2. The approximating function

It is well known that expected running time of GNFS algorithm is sube-
xponential given by the formula:
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Because of using the big O notation, we are not able to estimate expected
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where a = lnA.
To find out the constant a, we make the following transformations:

Let n1, n2, . . . nk be RSA modules. For each ni we denote its factorization
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We are looking for the minimum of the function:
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Afler substituting 3
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3 by xi we have got:
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2
.

Using the data from RSA Challenge presented in Table 1 we estimated
a = −27.5622.

Table 1: Numbers broken in RSA Challenge (Based on [4] and [6])

Name of Number of Number of Number of Estimated time
the number decimal digits bits instructions on 3.3 GHz[s]

RSA 140 140 465 2.72 · 1016 8.25 · 106

RSA 155 155 515 2.52 · 1017 7.65 · 107

RSA 160 160 532 1.88 · 1016 5.70 · 106

RSA 576 173 576 3.82 · 1018 1.16 · 109

RSA 640 193 640 2.08 · 1018 6.31 · 108

RSA 768 231 768 1.39 · 1020 4.20 · 1010

We also made computations1 of factoring large numbers with the
GNFS algorithm using Cado-NFS2 implementation. The results are based
on factorization numbers from 260 to 350 bits.

The results we got are very similar to these that we got from RSA
Challenge. We obtained a = −26.7220. The difference is small and is caused
by taking much smaller numbers to computation than in RSA Challenge
and because we had results of a sieving step from RSA Challenge only.

1 Computations were made on 3.3 GHz chipset.
2 See [7].
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3. ECM (Elliptic Curve Method)

3.1. Introduction to ECM

The Elliptic Curve Method is based on the idea used firstly in Pollard
p− 1 algorithm.
Let’s consider elliptic curve over the ring Z/nZ:

Ca,b : Y 2Z = X3 + aXZ2 + bZ3,

where GCD
(
n, 4a3 + 27b2

)
= 1.

Let’s define the point of this elliptic curve in projective coordinates:

P = (x, y, z) ∈ Ca,b(Z/nZ).

Let’s denote the smallest prime factor of factorized number n by p.
From Hasse’s theorem it is well known that |Np − (p+ 1)| < 2

√
p,

where Np is the order of group of Fp rational points on Ca,b curve. Then
we are supposed to choose the number B and to compute k =

∏B
r=2 r

e(r),
where e(r) = ⌊logr(p+ 2

√
p+ 1)⌋ and the point (xk, yk, zk) = [k]P

(mod n).
Finally, if Np|k, then p|zk and the divisor of number N may be found

by counting GCD (zk, n).
From the facts described above, it is obvious that the algorithm will

be successful with big probability if we find the elliptic curve with B –
smooth order.

3.2. ECM algorithm complexity

Estimation of ECM expected running time is not trivial. There are used
several hypothesis, some of them partially proved.

In the first article about Elliptic Curve Method (see [14]), Hendrik W.
Lenstra described estimation of expected running time. In this article we
try to show the estimation in slightly different way.

Hypotesis 1 (Sato – Tate Hypothesis). By ep we denote deviation
from the center of the interval which consists the order of elliptic curve.
By ap = ep

2
√
p we denote normalized deviation. Then ap ∈ ⟨−1, 1⟩ and

density of probability distribution of finding out the elliptic curve with
given deviation t is equal:

2
π

√
1− t2.
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Figure 1. The distribution of probability density of finding elliptic curve
with given normalized deviation

This hypothesis has been proved for almost all elliptic curve without com-
plex multiplication.

Assuming the hypothesis as true, we get the following conclusion:

The probability of finding out the elliptic curve with the given deviation

t ∈ ⟨− 12 ,
1
2 ⟩ is equal to the definite integral:

∫ 1
2

− 12
2
π

√
1− t2 dt ≈ 0.608998.

Moreover, we can assume uniform distribution in this interval.

3.2.1. The number of B – smooth numbers in the given interval
and consequences

To estimate the ECM time complexity we have to find out how many B

– smooth numbers are in interval (x−
√
x+ 1, x+

√
x+ 1) for the given

smoothness bound B.

Let’s denote by Ψ (x, B) the number of B – smooth numbers in the interval

⟨1, . . . , x⟩. Then we know3, that Ψ
(
x, x

1
u

)
= xu−u+O(u) ≈ xu−u. For large

numbers x we can simplify interval to (x−
√
x, x+

√
x), which gives the

3 See [15], page 77.
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same probability of finding B – smooth number:
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Finally we would like to count the probability of getting in interval
(x−

√
x, x+

√
x) the B – smooth number:
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The solution of this problem is not obvious. There are some theorems that
help to estimate the number of B – smooth numbers under some conditions:
Ψ
(
x+ xβ , x

1
u

)
−Ψ

(
x, x

1
u

)
≫ xβu−u, where β > 1

2 , u > 0. Unfortunately,

the case for β = 1
2 has not been proved yet.

Moreover, even assuming the Riemann Hypothesis is true, we are not able
to prove it.
In this case we assume that:

Ψ
(
x+
√
x, x

1
u

)
− Ψ

(
x, x

1
u

)
≫
√
xu−(u+o(u)).

Then the probability of getting the B – smooth number in interval (x −
c
√
x, x+ c

√
x) is ≫ u−(u+o(u)).

Under presented conditions we can expect, that the proper elliptic curve
will be found after about 1

0,608998u
u = 1.642042uu trials.

3.2.2. Estimating of expected running time of algorithm

Every step requires lnM(B) additions of points on elliptic curve and every
addition takes O

(
ln2n

)
of operations, where M (B) = LCM(1, . . . , B)

Let’s suppose that B = p
1
u . Now we are looking for such u, for which

the expected running time is the smallest:

T (u, n, p) = O
(
ln2n

)
O (lnM (B))O (uu)

= A · ln2n · lnM(B) · uu,

where A is a constant.
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The second Tshebyshev’s function helps us to find out the estimation of
ln (LCM (1, . . . , B))4

ψ (B) = ln (LCM (1, . . . , B)) ≈ B.

Then:
T (u, n, p) = A · ln2n ·B · uu = A · ln2n · p 1u · uu.

Let’s denote by S (u, n, p) = ln (T (u, n, p)). We have:

S (u, n, p) = ln
(
A · ln2n · p 1u · uu

)
= lnA+ ln ln2n+

1
u

ln p+ ulnu.

Then:
∂S (u, n, p)

∂u
= − ln p

u2
+ lnu+ 1 = 0

and
u2 (1 + lnu) = ln p,

u2 (1 + lnu) ≈ u2lnu ≈ ln p,

u2lnu2 ≈ 2ln p.

Finally we get u =
√
2ln p√
lnu2

, but u2lnu = ln p and from this equation we
get:

lnu2 + ln lnu = ln ln p.

Because lnu2 ≫ ln lnu, we estimate lnu2 = ln ln p, what gives

u =
√

2ln p√
ln ln p

.

Then

p
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ln p
u = e

ln p√
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√
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.

Finally we have

T (u, n, p) = A · ln2n · e
√
2ln p·ln ln p.

4 See [2].
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4. Main results

We made the estimation of factorization running time of GNFS which
is given by function

e
3
√
64
9 (lnn )

1
3 ·(ln(lnn) )

2
3−27.5622. (1)

We made load of computations of factoring by ECM numbers being
products from 2 to 6 factors, each the same length, from 80 to 130 bits.
We used the algorithm for point addition on elliptic curve with complexity
O(lnn (ln lnn)2 (ln ln lnn)) that lead us to the formula of time complexity
for ECM:

e
√
2ln p·ln ln p+ln(lnn (ln lnn)2 (ln ln lnn)) +a. (2)

From practical and theoretical obsrevations, which will be described below,
we consider that constant a should be different for different numbers of
factors. So we can describe the time complexity of factorisation by ECM
by formula:

e
√
2ln p·ln ln p+ln(lnn (ln lnn)2 (ln ln lnn)) +ai , (3)

where ai is equal:

• a2 = −27.1957 for 2 factors;
• a3 = −27.7505 for 3 factors;
• a4 = −28.1881 for 4 factors;
• a5 = −28.4320 for 5 factors;
• a6 = −28.6344 for 6 factors.

The differences between these values are the result of probability of finding
any non–trivial divisor of modulus. The more factors the number has, the
bigger is probability of finding out the proper elliptic curve with good
parameters.
If the probability of finding a proper elliptic curve for given smallest factor
is equal to P , then if there are k factors and all are the same length, the
probability of finding the non–trivial factor is given by:

d(k) = 1− P k − (1− P )k

= kP −
(
k

2

)
P 2 +

(
k

3

)
P 3 − . . .+

(
(−1)n+1−1

)
Pn.
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Because in our computations n is small (not bigger than 6) and P is very
small, we can consider that:

d(k) = 1− P k − (1− P )k

= kP −
(
k

2

)
P 2 +

(
k

3

)
P 3 − . . .+

(
(−1)n+1−1

)
Pn ≈ kP.

Then it is easy to see, that d(k+1)d(k) ≈
k+1
k . The probability has a direct

impact for the expected running time of the alhorithm. The bigger proba-
bility, the smaller is constant ai.
So we may expect that ai − ai−1 ≈ ln

(
i−1
i

)
, what gives:

a3 − a2 = −0.4055, a4 − a3 = −0.2877,

a5 − a4 = −0.2231, a6 − a5 = −0.1823.

Constants we got in our computations gave results:

a3 − a2 = −0.5548, a4 − a3 = −0.4376,

a5 − a4 = −0.2439, a6 − a5 = −0.2024.

Basing on our estimated formulas (1) and (3) we were able to compare
time required to factorization each number by GNFS and ECM algorithms.
We consider that secure MultiPrime RSA modulus should not be factorized
faster by ECM than GNFS algorithm. The Table 2 presents the smallest
length of secure modules which may consist from given number of cofactors
of similar length.

Table 2: Length of number for which GNFS and ECM have the same
expected running time

Number of factors The length of number in bits
2 8
3 724
4 4004
5 11155
6 23909
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In 2000 year the COMPAQ made a comparison (Compaq 2000) be-
tween speed of factorization large numbers being the product of several
primes by GNFS and ECM algorithms.

The calculations were done for expected running times given by follo-
wing formulas:

• e1.923· 3
√
lnn·ln2(lnn) for GNFS algorithm.

• 2(log10n)2e
√
2lnn·ln(ln) for ECM algorithm.

These formulas cannot result in precisious comparision of ECM and GNFS
algorithms.

We have estimated the number of prime factors for numbers of distinct
length, for which the GNFS is the fastest known factorization algorithm.
Similar analyzis, using the same functions and techniques as COMPAQ,
was presented by Martin Hinek in his article from 2006 ([10]). We pre-
sent the comparision of our results with results computed by M. Hinek in
Table 3.

Table 3: Maximal number of distinct prime factors for given length of
factorized number.

Length of number in bits 1024 2048 4096 8192
Maximal number of prime

3 3 4 4factors (our approach)
Maximal number of prime

3 3 4 5factors (M. Hinek)

5. Conclusion

Our computations may help to choose the better factorization algori-
thm in particular situation. We have shown that the comparison between
GNFS and ECM cannot be done properly if expected running times of
these algorithms are not described by precise formulas. Our description of
expected running time of ECM and some observations about the proba-
bility in situation when the large number is being the product of many
small factors resulted in formulas that can be used by everyone who want
to choose the fastest algorithm of factorization in particular situation.
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PORÓWNANIE ALGORYTMÓW FAKTORYZACJI
DUŻYCH LICZB POSIADAJĄCYCH KILKA RÓŻNYCH
CZYNNIKÓW PIERWSZYCH

Streszczenie.W artykule przedstawiamy analizę bezpieczeństwa powszechnie znanego
algorytmu klucza publicznego RSA oraz jego następcy MultiPrime RSA. Skupiliśmy
się na dokładniejszym wyznaczeniu oczekiwanego czasu faktoryzacji dużych liczb za
pomocą dwóch algorytmów: Metody Krzywych Eliptycznych (ECM) i Ogólnego Sita
Ciała Liczbowego (GNFS). Dodatkowo dla algorytmuMultiPrime RSA została obliczona
maksymalna liczba czynników pierwszych dla danej długości modułu, która nie powoduje
zmniejszenia bezpieczeństwa.

Słowa kluczowe: faktoryzacja, MultiPrimeRSA, Metoda Krzywych Eliptycznych,
Ogólne Sito Ciała Liczbowego, B-gładkość


